Extending GPS Orbit and Clock Products to High Rate GPS Satellite Clock Solution

D. Kuang, W. Bertiger, S. Byun, J. Zumberge

Jet Propulsion Laboratory California Institute of Technology

PLANS 2006

San Diego

April 26, 2006

JPL

Why High Rate Clock?

- Regular precise GPS orbit and clock solutions at 3 cm level
 - -- 15 minute for orbits, 5 minute for clocks
- Scientific studies need precise measurements at higher rates
- Error of interpolating GPS clock between 5 minute points

Solve for High Rate Clock from Phase Data

- Method 1: interpolating station clocks
 - -- fix receiver clocks and interpolate between 5 minute points
 - -- solve for GPS clocks only, very efficient
 - -- only a few stations good for interpolating
- Method 2: network solution
 - -- fix reference station clock only
 - -- solve other receiver clocks and GPS clocks in network
 - -- good data coverage, 99% with 25 stations

Use of Undifferenced Phase Ambiguity

Both methods hold phase biases fixed to their best known values

- For efficiency
- -- use phase measurement only
- -- otherwise 90% parameters would be phase biases
- For accuracy
- -- turn phase measurement into range measurement
- -- otherwise need pseudorange data which are noisy

How Good Are Phase Bias Parameters?

- If all models are clean, phase biases can be recovered
- Most resolved phase biases agree with previously solved values except a few 2π jumps

Error Sources from the Phase Data

- Mismatch between phase measurement and phase biases
 - -- alignment between 5 min and 30 sec data file
 - -- match between measurement and bias passes
- Mismodeling the phase windup effect
 - -- yaw attitude uncertainty
 - -- windup 2π ambiguity

Windup effect in Phase Bias Parameters

- Windup must match between 5 min and 30 second data
- 2π jumps associated with data gaps

High Rate Clock Solution Process (2)

JPL

High Rate Clock Solution Evaluation (1)

RMS difference over all 5 minute data points:

$$RMS = \sqrt{\sum_{Ns} \sum_{Nt} (T_h - T_r)^2 / \sum_{Ns} Nt} \approx 5mm$$

High Rate Clock Solution Evaluation (2)

High Rate Clock Solution Evaluation (3)

Kinematic Positioning Result for NTUS on Dec. 26, 2004

Summary

• 25 global stations recover 99% of 30-second GPS clocks

• 30-second rate GPS clocks at 5 mm level

• Daily JPL solution of 30-second GPS clock solutions at ftp://sideshow.jpl.nasa.gov/pub/gipsy_products/hrclocks